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STATISTICAL THEORIES OF SOLID SOLUTION HARDENING

R. Labuschl

ABSTRACT: Theoretical approaches to the problem of solid
solution hardening are critically analyzed and some modi-
fications and extensions to existing theories are suggested.
The significant parameters of solid solution hardening are
the concentration ¢ of solute atoms, the range of inter-
action w between solute atoms and dislocations, the strength

Nl

£ of the interaction and the line tension T of the dis-

0]
location. All theories, if carried out correctly, yield
either 7o o CHAfAI 1323 gr e~ e -1 for the rela-

tion between these paraméters and the critical shear siress
TCe Usually the first of these relations holds under the

conditions found in experiments while the other one is valid

3 .

2 -
only if cw < 10 7, i.e., in the limit of extremely small w
or small concentrations.

1. Problem Definition

Let us assume that the motion of dislocations is hindered by a statistical
distribution of foreign atoms (FA) or other obstacles, the interaction of which
(W.W.) is assumed to be known. The W.W. of a single obstacle may be described

by an internal stress field

. T w
3% fjao-¢1<;’§> (1)
where x, y are coordinates in the slip plane parallel and perpendicular to the
dislocation. .(In general, internal stresses will be designated by o and the
externally applied shear stress' by T). More complex W.W. with more than two
charqcteristicrlengths are naturally possible, but in order to avoid unneces>
sary complications, tﬁe present work will be restricted to the simplest case.

In place of Eq. (1), another statement may be chosen
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1. Institute for Metal Physics, Gottingen University.

* Numbers in the margin indicate pagination in the foreign text.

/917*



Here the obstacle is described by the force it exerts on the dislocation.
Let fo be the total interaction force acting on the straight dislocation. It
is typical for solid solution hardening (MKH) that this force is weak, i.e.,
that the angle 61, by which the direction of the dislocation is .altered through
interaction with an obstacle is small compared to 1: 0 = fO/T'< 1, where T is

the linear stress.

The density of obstacles will be given, depending on the context in which

it is used, as volume concentration S atomic concentration c or surface

at’
concentration ¢ in the ‘slip plane. The three values are readily converted into
each other. If the obstacles cbnsist of single F.A., then c, = cat/Q = ¢/h,

where () is the atomic volume and h the distance between adjacent lattice planes.

The probiem for which a solution is to be found, consists of the calcula-
tion. of the shear stress.Tcé which causes a qislocation to migrate over
arbitrary distances. Let us also assume that the free movements of the dis-
locations is sufficiently damped (by phonons and electrons) so that dynamic
effects are negligible and that the moveément is sufficiently slow on the average
so that an instantaneous equilibrium is established at all times. The start of
the motion of the dislocations is designated the critical state and Tc’ the 1918
critical shear stress. The problem is complicated by the fact that the line
stress prevents individual line elements of the dislocation from occupying
positioné of minimum free energy independently of each other, and therefore
cannot be solved by the conventional method$ of statistics. For this reason,
it is capable of adapting itself to the statistical field of the obstacles to
a certain degree only and this adaptation degree in turn depends on the number
and strengtﬂ'ﬁf the obstacles: fewer strong obstacles force better adaptation

then a greater number of weak obstacles.

2. Dimensional Analysis

The first publication 'in which this fact was recognized and considered are
those by Mott and Nabarro [1-3]. Prior to embarking on an anaiysis of these and
more recent attempts to solve the problem, it appears suitable to conduct a
dimensional investigation to determine in a very general manner the type of
results that can be expected in principle from a statistical theory; if only a

single type of obstacles exists in the slip plane, the dislocation in static



equilibrium can be described by the following equation:

s ) / . ) _ . .
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The shape of the dislocation line is a solution of this equation with
periodic boundary conditions, where the length of period is assumed te be equal
to the macroscopic dimensions of the crystal are to the mesh width of the dis-
location network. The mathematical signs are chosen so that positive values of
fo®/v correspond to a W.W. force acting in the negative y direction. In
accordance with the aseumptions? the start of the motion of dislocations may be
considered a sequence of“statie eQuilibria; Therefore, the form of the dis-
locations must repreéeﬁt a solution of Eg. (3) even in the critical state. Five

parameters appear in this equation: T, f v, w, and c¢; the concentration c is

O,
implicitly included in the (Xv’ yv) distances of the obstacles. Introduction
of the dimensionless variables £ = x »fE”and M=y bfg.yields a system in which

distances are independent of c. Following division of the equation by T: °

& f ¢(s~sv-n—m>+ ™, (k)
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Any variation of c thus.is traneformed into variations of the characteristic
lengths v and w. This eliminates one of the five original parameters. The exact
solution for ch may contain only the parameters fo/v . VG_ - T, v\/gz w \/rg’
and ch/T \/E: Exactly '

» ’ _ ) A :
ch = T'\/.C\ET< J/O—T y ch, ?,U'\/C) (5)

AV

where Y is a function to be determined by the theory. Usually, the result is a
product of the powers of the parameters involved. The result then may be written

- as follows:

2 \a

b = const. " fo - <J—9) A Tyf (3>/ (6)
- T w .
Since v/w is a dimensionless number of the order of magnitude of one, the
theory in essence must yield a coefficient and the exponents ¢ and B. It must
also be expected that ¢ > O, because Tc must certainly be a declining function
of T. (For T = «, the dislocation is always a straight line. Fitting to the

statistical obstacle field is then impossible and the average of all W.W. forces



on the dislocation is zero, with the exception of statistical variations which

decline in magnitude per unit length with increasing length of the dislocation).

This genefal consideration is of interest for the evaluation of detailed
theories: the result of a theory must not contradict Eq. (6). It is also
interesting that in some cases in contradiction to the condition of ¢ > O,

Tc ~'fo is found experimenté}ly, i.e., for body-centered cubic metals. It nust
then be concluded that the fundamental Egq. (3) is not applicable, which is
actually expected due to the role played by the Peierl potential in the metals.
Finally, it may be concluded from Eq. (5) that for point obstacles, i.e., in
the boundary case of V'V; - 0, w VZ - O,-ch'~//: must be true exactly; since
the boundary value of Tc-cannot be neither zero nor infinite, ¥ must be such

that 1lim Y = }?o(fO/T), Then

v\/Z—»O

wvc—0 . - (7)
lim 7p=T-Vc 5, (5)
2V e—0 ) T
Vo0

where it is also required that YO(fO/T) be more than proportional to fOT, so
that ch may become a declining function of T. In actual fact, both detailed
theories [4-6] and computér experiments [7] always yield Tc'v Vfg for point 1919

obstacles.

3. The Statistical Theories of Mott and Nabarro
and of Asimov and others

In order to better compare the different approaches and solutions, let us
select a reﬁfésentation somewhat different from the  original theories, while

utilizing their fundamental ideas and arguments.

Mott and Nabarro begin with a statistical internal stress field with a
characteristic wavelength )\ and a typical amplitude of o.° A which is set equal

cv_l/B, which must be further discussed. Since 0 € 1 (see Chapter l), the

to
dislocation cannot adapt itself to this stress field. The linear average of o
thus always acts on a length of L » A. The statistical variations of the linear
averages are taken as the effective obstacles. The average amplitude of the
oscillations, designated by oy is a function of L. ~L is then selected so that
complete adaptation to the effective obstacles is possible. For this purpose,

it is necessary that the effective stress field with an amplitude oL impose a



wave character with an average wavelength of L and an amplitude of A on the dis-

location (Figure 1).

Then, it must be true that

RN @)
2\2/ T )
due to the “assumed perfect fit

(9)

Mott and Nabarro then argue that in
accordance with the rules of statistics the

oscillations of the average of ¢ over L are

D Gl e

equal to the amplitude oa divided by the root

[ R _ : of the number of wavelengths A which fit
T L ' into L: ¢, = 0¥ A/L. They use the linear
Dislocation : L a
: average of the stress ‘GH\ of a single
Figure 1. Effective obstacles obstacle over a volﬁme of VC = l/cv for the

in the theory by Mott and Nabarro. amplitude o, This yields

. FER .
A.G‘Lz\/z'?‘;JVC[GH!(Z“T (10)

Mott and Nabarro set A ='cv_l/3. Elimination of L from the Egs. (8) and
-(10) yields: o ‘
T, ~ 0‘4/3011/97‘!—1.’3 log Cas (ll)

Here, iﬁ_is assumed that the stress field of an individual obstacle declines

for large distances r with 1/r3..

The concentration dependence implied in Eq. (11) has not been observed
experimentally. If, however, one makes an effort to modify the theory in its
weak points, experimentally well confirmed results are obtained; the weakness

of the theory of Mott and Nabarro lies in their calculation of oL and their

assumption concerning the value of A. Let us first discuss oy The decisive

point here appears to be the linear averaging of ¢, in the calculation of the

H
amplitude oa. Actually, o, is not even needed, because the correct formula for

. : e s 2 2. .
oL according to the methods of statistics. is op = E(di>L ), where E(<§>L ) is

the expected value of the square of <G>L and the <q>L the average of ¢ over the

5



length L. In the calculation of the expected value one must consider that
foreign atoms are fixed on lattice planes which may assume z coordinates, i.e.,
discrete values. In contrasf, the dislocation line may assume arbitrary posi-

tions in the slip plane, so that x and y pass through a continuum. Then

40

N - ] fz+L l o
E(<G>L2) ::—;» JJCZL{ZJ{J (x':y.(?l—%-%)hdx’}- (12)

where h is the distance of lattice planes parallel to the slip plane and V a

large standard volume.’

It is seen here that lattice planes édjacent to the slip plane furnish an
overwhelming contribution to the MKH, If oy declines with 1/r3, the nit term of 192(
the sum in Eq. (12) is proportional to 1/{(n + %) i.e., the contribution of

the two adjacent planes twice removed is to the contribution of the two immediately

adjacent planes as 1 is to 81.

If L » v, then PR Lo
-—C/L 3‘ jL ' O'H n‘i“’>h)dx]dxdy

This yields: Z ~ (e/L)fe*(0ft) and -

~I'v'; ‘.
aL=__.4-J%’ % . (13)

The numerical factor A is a function of the exact form of W.W. It is of
the order of-magnitude of 1. fo has been defined in Eq. (2).
_1/3

The assumptlon of A~ c again does not stand up to an accurate

statistical analysis. Statlstlcs yleld [8 9]

;= w\/§ with § = B((0)d)
1
)
.and S1 =5 <aj>

A is also proportional to the correlation length of the statistical stress
field. A precondition of the validity of this relationship is that numerous

single‘obstacles contribute to Oy this, however, has been assumed in any case.



2 : 2 .
Evaluation of E(<é0/8y> L ) with the methods used for E(<2>L ) then yields

}=aB 1w (14)

where B is again a numerical factor of the order of magnitude of 1.

Substitution of Eq. (14) in Eq. (8) and the solution of Egs. (8) and (13)

with respect to o, results, with consideration of Eq. (9) in

L

rb = A 33 P31 ' (15)
A' is again of the order of magnitude of 1.

This relationship is in agreemént with the exception of the coefficient with
the result of a much ‘moreé’ detailed statistical theory, which will be discussed

later. It has béen confirmed by a great number of experimental measurements.

The method used by Riddhagni and_Asimov [10] closely resembles our modifi-
cation of the theory of Mott and Nabarro; In ﬁlace of Ops here the oscillation
square of the W.W. energy ¢ is calculated, which, however, is fundamentally the
same. L is determined by minimizing the total energy, composed of linear energy

and the W.W. energy

*w/m> =0 (16)

where A characterizes the amplitude of the wave character of the dislocation.
This yields a relationship between L and A analogous to Eq. (8). The relation-
ships between T and ¢, is obtained as follows: if A is taken as a free para-

L

meter, than T = X{(A) < o,, where X(A) is a dimensionless correlation function

with a half value width o; A, which for A € A is proportional to A and for
AD> A tends.asymptotically toward 1. (For details of the argument see the
original paper). It now appears convgnient to maximize Tc with respect to A.
Instead, A is set arbitrarily equal‘tb an atomic distance in the slip plane.
X(A) is assumed to be proportional to A. This procedure is questionable, because
as seen previously, A as w and w in turn_depends on the order of magnitude of an

atomic distance, so that A € A is not true.

In the result, however, this differing procedure leads merely to a coefficient
different from that in Eq. (15) and to a different power of w, while the other

parameters (f., T, and c) have the same powers.

O’



L, «The Fleischer Friedel Theory and the Calculation
of the MKH with the Aid of a Digtributiocn
Function

The theories described in the foregoing do not represent the actual process
of the fitting of a dislocation line fo the statistical field of an obstacle.
Qualitatively, the process may be desdcribed as follows: if an external shear
stress is applied to the crystai, the dislocation initially remains at locations
where ¢ is strongly positive (i.e., in opposition to motion). The dislocation
bends between these positions. Through the bending, the dislocation leaves
locations with negative:c and positions with positive o occupied. In order to
obtain a positive average .of o,:complete adaptation to the positive maxima of ¢
is not neéessary.\ The adaptation increases gradually until the line begins to
tear. away from the initially contacted maxima; at this time the critical state
has been éttained. Let us discuss in the following two theories which explicitly.

treat the problem of adaptation.

Fleischer and Friedel's theory [4, 5] /92
which will be discussed first, may be

o . applied strictly to point obstacles only.

O~
-

- ) —1
N
"‘/
0O

In Figure 2 the way in which a dislocation
fits itself to the obstacles is demonstrated.

Since the range of the W.W. can be assumed

e

L to be arbitrarily small (w\/g € 1), one -

! . .
/ may distinguish between contacted and not
7 ‘
4 © contacted obstacles. Let the average
\ ‘ distance between obstacles contacted be a.

In the critical state Tb fo/a° The cal-
Figure 2. Dislocation in the )

critical state with point obstacles. culation of a in the critical state is

‘based on the following reasoning: if the
dislocation is torn from an obstacle because the maximum W.W. force has been
exceeded, "it passes over the surface area F and occupies the position indicated
by the broken line. This increases the force acting on the rest of the obstacles
so that they also become overloaded and are torn off. The tear propagates (this
is called the 'zipper effect")f It can be_arrested only if the dislocation is
captured by other obstacles during its passage over the F surface. The conditioh

of the critical state in which the tearing process just begins is thus F ~ 1/c.



The line stress formula yields F = aBTb/ZTa Substitution of F = 1/c, solution
- with respect to L and substitution of the value of a obtained in this manner in

the equation T = fo/a yields

b = fARMF2T) R (18)

In place of the considefation presented above, the applied stress may be
increased beginning with T = O and then it may be asked, how the average distance
between the initially contaéted obstacles decreases with increasing values of T.
This takes place because the dislocation bends between the original obstdcles and
thus touches new obstacles. A'simple derivation by Friedel [11] yields the
equatioh a = \? T/Tbe, which with the excebtion of a numerical factor has been
confirmed by the exact theory [12]. If this is substituted in ch = fo/a,'

Eq. (18) is again obtained, with the exception of a coefficient. Comparison with
Eq. (6) shows that the result satisfies the cbnditions of the general theory.

1/2

The prediction that for point obstacles Tc'v c * has also been confirmed.

Even for point obstacles the theory described above is not exact, because
from the beginning averages of the W.W. forces at the individual obstacles and
of the distances between obstacles contacted, are used in the calculations. In
an exact theory, distribution functions must be caiculated for the distances and
forces. However, no substantial change in the result as compared with Eq. (18)

would be expected. Another coefficient would result, but the powers of f c,

O’
and T remain unchanged. The manner of executing such an exact theory is presented

in the appendix.

The mosﬁ,important objection is directed against the assumption of point
obstacles. In order to justify this assumption, it would be necessary that the
range w of the W.W. should be less. than the average bend §O between two obstacles.
Otherwise, the sharp distinction between contacted and not contacted obstécles
would be meaningless, and secondly, obstacles would have to be considered which
occupy positions in which they do not counteract applied shear stresses but re-
inforce their action. Eiementary algebra -then yields §O = f02/12T . ch. This,

however, for typical values of f T, and Tc is practically always of the arder

O’
of magnitude -of w or greater, so that the most important condition of the theory

is not satisfied.



5. Description of M{H by a Distribution Function

For an adequafe.descriptidn of the situation created when the range of W.W.
is greater than the average bend between two obstacles, it is necessary to
introduce a distribution function for the distances between the dislocation and
the individual obstacles. Let us therefore define the number of obstacles per
unit length by o(y) - dy, thé distance of which to the dislocation is between y
‘and y + dy. It is seen immediately that for vanishing values of W.W. p(y) must
be constant and equal to the area concentration c, because in this case no cor-
relatiomn exists between:the position of the dislocation and the locations of the
obstacles., Therefore, p(i®) = ¢ is dalso true. If o(y) is known, the applied /922
shear strencth in a statié eqﬁilibriﬁm is ébtained by simple integration

[+= (19)
b = J CopWfy) dy

—0

* where ) i
' ' ﬂn{Tw (x A

(1) = "— - =y dz.
S vJ—w ¢ v’ w)

3(x/v, y/w) is the function & defined in Eq. (2). In the anticipation of the
integration over X and the following description of the problem with a single,
y coordinate, an appfoximation is hidden which could also be interpreted as the

substitution of a Dirac-§-function of x for the W.W. function &(x/v, y/w):

J;—"ﬂ‘; : ~’> — Jo \—4) - 8(x) = fly) - bla).

This assumption is justified if the.change,Ay.in the vertical distance -
between the dislocation and obstacle on the lengfh v is small compared with W.
Here, Ay < v8/2 is also true, with 8 the.angle assumed to be small. This angle
expresses the total change in direction at the obstacle and since in general v
and w are of the same order of magnitude, the'apprgximation is in fact always

good.

The detailed calculation of p(y) is found in the original papers [13, 14],

therefore only a simplified derivation is presented here.

10



Let us consider the average change 8y in the distance between the dislocation
and an obstacle during a change in the average location -of the dislocation by
8t. 8y is the average over different configurations of all other obstacles with

the exception of the one under consideration. Then

55— o ___f,(y.)éy_.(o)a@) . (20)

G(x) is the average response function with which the dislocations react to the

change in the W.W. force f' - §y(0). From the detailed theory

1 ' (21)
G = _‘lx'/L
@) \/aTe

L:\/_g_’_ | (22)
A

and ¢ is equal to the average value of f'(y)8(x) over the entire length of the

where

dislocation. ¢ must therefore be self-consistently determinable from o(y):

[ ' (23)
% = } P (W) dy »
—_
Due to the fact that G is dependent on o, the effect of all other obstacles

must be contained in the response function.

The deséription by Egs. (20), (21), and (23) represents an approximation
and is valid in this form only if the influence of the obstacles over which
averaging takes place, is sufficiently blurred. In the appendix, this condition
is mathematically formulated and it is shown that in the boundéry case of sharply

localized obstacles Egs. (20) and (21) continue to be valid, but with

3 ¢ is of the order of magnitude of 1. The significance of ¢ is explained in
the appendix. As the result, both point-like and extended obstacles may be _

treated with the same- formalism.

-It follows from Eq. (20)
=2 -G k
=5 T T oo

From this, p is found by the equation |

11
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o~ oy \I+ AOF )/ (25)

The derivation of this equation is found in [13]. In the critical state
0(y) must become stationary, i.e., 0p/d! = O. With the boundary condition of

p(+®) = ¢ the stationary distribution function becomes
L A

5= {g(l + GO (y) or | (26)
The case of p = O is highly important. It occurs with certainty if
(1 + go)e'(y) <0 because p cannot be negative. In this case a gap occurs in
the distribution function) one édge'éf.which ma&-be freely chosen within certain
limits while thehother is determined by the preservation of the number of
particles. The following must be valid: If:(p - c)dy = 0. In Figure 3 these
conditions are represented for a typical W.W. function. 1 + Gf'(y) is plotted
against y. The left edge of the gap may be between Yy and Yo while the

corresponding right edge assumes values between yl' and y2'°

/92:

5 -
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Figure 3. 1 + G(0)f'(y) as a funhction Figure 4. Theoretical dependence of the
of the distance of the dislocation to  critical shear strength on the dimension-
an obstacle. The left edge of the gap less parameter P ='(;iL_Y“

in the distribution function p(y) may \aTew?)

be between yj and ygs. The heavy line . .

represents p(y) in the critical state (Figure 1 in (14).

for a dislocation passing to the right.

Due to the preservation of the number

of particles, the shaded areas must be

equal to each other.

The actual position of the gap depends on the applied shear stress, because

the force equilibrium requires Tb- = Ip(y)f(y)dy and the value of the integral is

12



a function of the position of the gap. If the gap is symmetrical with respect
to 0, then fpf dy = 0. The symmetrical position thus belongs to T = O. The
maximum value of T is attained when the left edge of the .gap is at Yoo Then,
the critical state is attained because the dislocations can run over arbitrary
distances without further increases in the value of 7. The system of Egs. (19),
(21), (23), and (26) mist be solved numerically. Combination of the parameters
in a suitable manner into dimensionless numbers yields ch/fowc as a function of

2 . . . .
P = (fo/éTw c)l/Bo This function is plotted in Figure 4.

2.2
The following was assumed for the profile of W.W. f(y) = fO(Zy/w)/(l + (y/w) 7).
It is seen that the function.becomes linear for large values of the parameter P.
Therefore, in this case_.

b = const. - H3filPMA-E (27)

The constant depends on the exact form of the f(y) function. Thus, the
same result as with the modified Mott and Nabarro theory is obtained. If in
the case of sharply localized W.W. for ¢ in place of Eq. (23), Eq. (24) is used,
the following is obtained in place of Eq. (27)

: o 1&%“T4”- "(28)

b ~e

The sharp decline of'TCb for small values o% P = (fo/lchwz)l/3 in Figure &
and the complete disappearance of the MKH at P~ % is the result of the dis-
appearance.of the distribution function p(y) when the maximum value of £'(y)
becomes so small that everywhere 1 + G(O)f'(y) > 0. This result is consistent
and correct if, as has been done in the bresent case, a single obstacle is con-
sidered in the derivation of p and the other obstacles in the vicinity included
through a sﬁétistical average only. It is, however, not realistic, because
favorably situated .groups of.cLosely adjacent obstacles may act as a single
obstacle so that in the execution of the group statistics a gap will still
result in the correspoﬁding distribution function for groups and thus a finite
TC. The calculation of the MKH.with consideration of groups of obstacles can
be performed by the following scheme: as in the theory of Mott and Nabarro, the
statistical variation of W.W. averaged over a length L  are considered effective

0

obstacles. Lo must be of the order of magnitude of the characteristic length L

of the response function as defined in Eq. (22). This yields in place of a

single~%ype of obstacles a spectrum can again be replaced by a uniform type of

- obstacle. The strength of these effective obstacles is T = g, bL .
' : eff Lb 0

13



Substituting Eq. (13) for o, yields
O '

Fere & foV Lgwe. (29)
Their number per unit area is
AU (30)
of? 'l(’Lo

The width of effective obstacles is again of the order of magnitude of w. 1924
The parameter P now has the value of‘(fo/lf’l‘wzc)l/3 . \/chb , and is thus
larger than for single obstacles. Eq. (27) thus again appears to be justified,

2,1 .
even when (fO/QTw c) /3 is not large with respect to 1. Here, however, in-

dependently of the chéice of the length LO one obtains exactly the same result
as before, because fgé? ° czé% = f§/303/2° It appears that the power law given
in Eq. (27) has a more general validity than indicated by its derivation. Only
in the case of point-1like obstacles must a transition to the formula given in
Eq. (28) be provided. In a more accurate calculation, in which a spectrum of
effective obstacles is considered, it may be shown that even without application

of the boundary case (fO/QTwzc)l/3

° V/Z;EB > 1 generally a result of the form
of'Eq° (27) is obtained [15]. "In the extension of the theory; it must be con-
sidered that potentially the fluctuations of W.W. no longer represent weak
obstacles and that their width in the direction is much greater than in t@e y
direction so that all of the steps in the theory must be examined whether assump-
tions made with respect to these propefties have .been violated and what effect
this has on the result. The fluctuation theory must certainly be applied when
(fo/éTcwz)l/?fis approximately equal to 1 or smaller. Here, this does not lead
to new results’, in the context of other problem definitions, such as, for example,

the problem of thermal activation, differences in the statistics of single

obstacles may appear.
6. Conclusions

The theories of the MKH may be divided into two groups. In one group, the
W.W. of the dislocation with singlé obstacles is considered the elementary pro-
cegs, while in the other group; the statistical fluctuations of the W.W. averaged
over a certain length, are taken as the effective obstaclés. A connection be-
tween the two groups may be established in the context of a theory which
describes the problem with the aid of a distribuﬁion function. The fluctuation
theories yield for the critical shear stress a power law in the form of Eq. (27),

14



while calculation with individual obstacles leads to Eq. (27) or (28), depending
on the choice of parameters, With the MKH of face-centered cubic metals, i.e.,
in the case of W. W. with single foreign atoms, -the values of the parameters

fO’ c, T usually are in a range in which the condltlons for Eq. (28) are not
satisfied. In Chapter 3, the relatlonshlp f /12T bT > w was established for
1/2 > w., With
the typical values of fO/T=§ 10 -1 and ¢ =~ /w , the condition St < 10—3 is

obtained, i.e., the requirement of very low concentrations, where reliable experi-

this case. Substitution of Eq. (28) for T b 1eads to (2f /144 T)

mental determination of. T is usually not possible. The description by a dis-
tribution function with 51ngle obstacles requires almost the same condition:

(£ /Ly::T)l/3 > w2/3, which results in' the condition of ¢ < 1/40, at the same

ratio fO/T;a _Q_lg Although this condition can be satisfied in principle, it is
often violated. It‘must thus be assumed that the MKH are normally described by

o a fluctuation theory with Eq. (27) as the_resulta On the other hand, in the case
of hardening with small precipitations, to which the theories are also applicable
in principle, the case of a localized W. W. is frequently realized, because here,

due to the much stronger W.W. the fo/T ratio is higher and an appreciable

hardening effect occurs even with very low concentrations.

None of the theories described here considers the overcoming of the obstacles
with the aid of thermal activation. The pertinent literature contains only
qualitative estimates in connection with this problem. The applicability of the
results is thus in a strict sense restricted to 0°K. DMeasurements, on the other
hand, of MKH are usually performed at very hioh temperatures (for reasons of
" experimental convenience), on the so-called plateau range, in which the critical
shear stress ‘is independent of temperature, while it increases strongly at lower
temperatures.with respect to the plateau. (At low temperatures the experiments
are rendered difficult by the strongly inhomogeneous slib and the occurrence of
lLuders bands). This process may be justified phlienomenologically by the state-
ment that Tc as a function of temperature behaves similarly for different values

of the parameters f c, T, and w, so that measurements in the plateau range may

o’
be taken as representative for the MKH w1thout thermal activation. However,
this similarity has not been explained satlsfactorlly from a theoretical stand-
point and an interpretation of the existence of a plateau in place of a

monotonous decline of the critical shear stress with rising temperatures is also
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lacking at this time. A solution of this problem requires the incorporation - 1925
of thermal activation in the statistical theory, in which the spectrum of
effective obstacles, as found in the fluctuation theory, must also be considered.
Suitable approaches to an extension of the theory in this sense have been pre-
sented. They lead to highly complex differential equations, which have not yet
been completely solved. Preliminary célcula{ions indicate, however, that the
extended theory does in fact show the existence of a plateau and that the height
of the latter is proportional to the critical shear stress calculated by
neglecting thermal activation. The factor of proportionality depends only on
the average velocity imparted to the .dislccation by the conduct of the experi-
ment. The extent to which a uniform dislocation velocity can be assigned to the
beginning of the macroscopic plastic deformation, which defines TC, must be
determined. Measurements of shéar stress as a function of velocity (or vice
versa) at single dislocations, appear to be needed for a complete clarification

- of the problem.
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Appendix

l. Derivations of the response function used in Chapter 3 for blurred W.W.
are found in [14, 15]. This formal approach cannot be applied to sharply
localized obstacles. By way of‘a simplified model computation, first a quantita-
tive criterion is established to distinguish between the two cases: the
statistical distribﬁtion is replaced by a chain of obstacles at the same distancé
Y, from the dislocation and at the same distance a from each other. The re-
sponse function is examined at an aadltlonal obstacle, at x = O Due to the
periodicity assumed, X, can be restrlcted to the interval 0 < XO < a., The origin
of y is placed so that the additional obstacle is located at y = O. As explained
in the text, the W.W. may be treated in the x direction as Dirac-Delta-functions.
Then, the dislocation is described by a différential equation of the form of
Eq. (3). An increase in the applied shear stress by 8T yields for the change -
8y in the position of the dislocation (see Figure 5a):

T
o2

- z Sz — na)f’ . éy(na)

— 8w — 2)f (y(2)) - Oy(zo) + 6vb =0

(A.'l)
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with £1 = £'(y_).

If no additional obstacle exists, that is f'(y(xo)) = O, the solution of
this equaticn consists of parabolic curves. In the interval of na < x < a(n + 1)

Figure 5 b ‘is valid

Syg = 07b {— + f— f:: — (= ’—-“(_'ﬂ - '-1."));“ (A.2)

The solution for f'(y(xo) £ 0 is given in the form of a sum 8y = 6yy *+ By,
Then 6yl consists of straight line segments with breaks at the locations of
. : A +na/L
X = na and at x = X, (Figure 5b). The initial statement of éyl(na) ~ e
yields a solution with the condition 2T - (cosh a/L -.1) = £f' » a. With the
" analogous application of the definition given in the main text in Eg. (22) of

&, in this case g = f'/a. Then"

_ )( W ‘\) -2
2icosh — — 1} =a®- =
L r (A.3)

It is seen that L is in agreement with the definition given by Egs. (22)

2
and (23) if (a~ - @/T) is less than 1. A power expansion of this parameter

. /5?(1 1 a )

24

.yields

To obtain the value of the response function at Xqo the following approach

. is used )
deem®L fir o g» 1 ) 6
. _ .
3. e*““”‘ fir 2<0 VA4
ol _ 1 \ in the )
Sjr=1{B- (———— + } interval g, <z < ¢
_ ( ¢l L \\ in the
4 + J interval 0 <z < Zo

\

It follows from the continuity at Xq that

. N
o) = ‘4(_,_7_ o 1> ‘ : (A.4)
' wall 1
=~B<€————x~ -+ 1)
7

Substitution in Eq. (A.1l) and integration over a small interval around the break
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at X, yields the second condition

—~afL __ e/l _ 3
o ._€___E+B-.f_____],f

L a (A.5)
| G CARSAC IR EN)
Elimination of A and B from Egs. (A.4) and (A.5) leads to
. 5_.’,/(3;0)':
' Dolzg) (A.6)
L a* = 2z4(a — zy)coshaf/L — 1)

1"+ 2a sinh (a/L) 'f’(y(xo?)

4

y | .

. | _ .
Figure 5a. A dislocation in interaction with a chain of
obstacles and an additional obstacle at x = Xp-. Upon
increasing the applied shear strength T by 8T the solid
line changes into.the broken line. The difference is dy.
- A

y
) ”
R A
s . Y gy /\/ )
2-‘2\1,0 1 2 0
: Sy,
-~ ~
~

Figure 5b. The change. 8y in the position of the dislocation
if the applied shear strength is increased 8y may be divided
into 8yg in the absence of an additional obstacle and into
8y1 caused by the additional obstacle at X = Xqe
In this model, averaging over different X5 between zero and a:
6; = 1/a fg éy(xo) dx_, corresponds to averaging over different configurations.
In performing this computation, it should be noted that the average of Byo is
equal to the 8! defined in the text. Power expansion of a/L shows that in the
appreoximation in which L is in agreement with the characteristic length of the

response function defined in the main text for blurred W.W., the relationship
8y = 81/(1 + G(O)£'(y)) with G(0) = 1/2 VT is also correct. The transition
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between blurred and "localized" interactions is thus at a/L = 1, where-L is to
be calculated for blurred W.W. Statistical theory offers the following formula

for the calculation of a: .

+ 7
a ::f p(y) dy an.
_w :

2. In order to calculate fhe.response function for localized interactions,
let us return to the realistic case of the distribution of the distance between
the obstacles. Let the average distance be <a> o Let us consider again a single
obstacle at a distance y from the dislocation and let us increase T by §T. If
fr{a>/T » 1, then 8y is small at the location of the obstacle with respect to
the average displacement 81 of the entire dislocation. Because of the force
equilibrium, 8y~ {a> 6T * b/f'(y). Eq. (A.2) yields, with consideration of /927
T/f' (a» < 1 the reiationship

, 1{e. 12 «orb
S= ] CYod¥ =157

The distribution of the a distances therefore is

’ I\
5l = %%3 ' (A.7)

Accordingly, 6y = &1 - 12T<'\a>/f'(y)<a2>n In this case, it is stated that
the obstacle has been contacted. If, however,{a> f'(y)/T € 1, the obstacle is
not contacted and the average displacement at the obstacle is the same as the
average shift of the eﬁtire dislocation: 6; = 1. The following interpolation
formula,inclgdes both cases. Y

Sy = AT
1+ F(y)G(0)
with G(0) = <a2>/12’l‘ a . This eq.ua’tioﬁ is exact in the case of infinitely
sharply localized interactions. The following is thus again valid:
do ] ( p )
al 3y \L o))
: 2, = . R . .
It remains to express <a > and <a> by the distribution function. We note

that
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o7b d
Jf £ Sy dy

ol
2 .
&
f’ 3 \T =700 )) 4

=f W) (y) 4y
1+ GO)f"(y)

5
and that on the other hand, in accordance with Eq. (A.7) dTb/dt = 12T7/{a” ).

It follows that 127

S ply) dy
JTE 000w

(@ =

. : . 2 .
Let us assume that <a>»2 is equal to {a ywith the exception of a numerical
factor €; then G(0) = 1/2\/ng with
. I'(y) . (A.8)
Uy = 3¢ e (Zy
1+ GO)f'y)

The computation of €, which is readily possible with the aid of the dis-

tribution function given in [12], has not yet been performed.
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